HECO: Fully Homomorphic Encryption Compiler

PROCEEDINGS OF THE 32ND USENIX SECURITY SYMPOSIUM(2023)

引用 3|浏览9
暂无评分
摘要
In recent years, Fully Homomorphic Encryption (FHE) has undergone several breakthroughs and advancements leading to a leap in performance. Today, performance is no longer a major barrier to adoption. Instead, it is the complexity of developing an efficient FHE application that currently limits deploying FHE in practice and at scale. Several FHE compilers have emerged recently to ease FHE development. However, none of these answer how to automatically transform imperative programs to secure and efficient FHE implementations. This is a fundamental issue that needs to be addressed before we can realistically expect broader use of FHE. Automating these transformations is challenging because the restrictive set of operations in FHE and their non-intuitive performance characteristics require programs to be drastically transformed to achieve efficiency. Moreover, existing tools are monolithic and focus on individual optimizations. Therefore, they fail to fully address the needs of end-to-end FHE development. In this paper, we present HECO, a new end-to-end design for FHE compilers that takes high-level imperative programs and emits efficient and secure FHE implementations. In our design, we take a broader view of FHE development, extending the scope of optimizations beyond the cryptographic challenges existing tools focus on.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要