Profiling of the full-length transcriptome in abdominal aortic aneurysm using nanopore-based direct RNA sequencing.

OPEN BIOLOGY(2022)

Cited 2|Views8
No score
Abstract
Abdominal aortic aneurysm (AAA) is a common and serious disease with a high mortality rate, but its genetic determinants have not been fully identified. In this feasibility study, we aimed to elucidate the transcriptome profile of AAA and further reveal its molecular mechanisms through the Oxford Nanopore Technologies (ONT) MinION platform. Overall, 9574 novel transcripts and 781 genes were identified by comparing and analysing the redundant-removed transcripts of all samples with known reference genome annotations. We characterized the alternative splicing, alternative polyadenylation events and simple sequence repeat (SSR) loci information based on full-length transcriptome data, which would help us further understand the genome annotation and gene structure of AAA. Moreover, we proved that ONT methods were suitable for the identification of lncRNAs via identifying the comprehensive expression profile of lncRNAs in AAA. The results of differentially expressed transcript (DET) analysis showed that a total of 7044 transcripts were differentially expressed, of which 4278 were upregulated and 2766 were downregulated among two groups. In the KEGG analysis, 4071 annotated DETs were involved in human diseases, organismal systems and environmental information processing. These pilot findings might provide novel insights into the pathogenesis of AAA and provide new ideas for the optimization of personalized treatment of AAA, which is worthy of further study in subsequent studies.
More
Translated text
Key words
abdominal aortic aneurysm, nanopore-based RNA sequencing, alternative splicing, alternative polyadenylation, lncRNAs
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined