Learning Infinite-horizon Average-reward Markov Decision Process with Constraints.

International Conference on Machine Learning(2022)

引用 19|浏览23
暂无评分
摘要
We study regret minimization for infinite-horizon average-reward Markov Decision Processes (MDPs) under cost constraints. We start by designing a policy optimization algorithm with carefully designed action-value estimator and bonus term, and show that for ergodic MDPs, our algorithm ensures $O(\sqrt{T})$ regret and constant constraint violation, where $T$ is the total number of time steps. This strictly improves over the algorithm of (Singh et al., 2020), whose regret and constraint violation are both $O(T^{2/3})$. Next, we consider the most general class of weakly communicating MDPs. Through a finite-horizon approximation, we develop another algorithm with $O(T^{2/3})$ regret and constraint violation, which can be further improved to $O(\sqrt{T})$ via a simple modification, albeit making the algorithm computationally inefficient. As far as we know, these are the first set of provable algorithms for weakly communicating MDPs with cost constraints.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要