谷歌浏览器插件
订阅小程序
在清言上使用

Porous Cellulose Acetate/Block Copolymer Membranes for the Recovery of Polyphenolic Compounds from Aquatic Environments.

ACS omega(2022)

引用 3|浏览11
暂无评分
摘要
Polyphenols are natural compounds with strong antioxidant properties synthesized by plants and widely distributed in plant tissues. They compose a broad class of compounds that are commonly employed for multiple applications such as food, pharmaceutical, adhesives, biomedical, agricultural, and industrial purposes. Runoffs from these sources result in the introduction of polyphenols into aquatic environments where they further transform into highly toxic pollutants that can negatively affect aquatic ecosystems and humans. Therefore, the development of extraction and remediation methods for such compounds must be addressed. This study describes the identification and operation of a method to recover polyphenolic compounds from water environments by utilizing membrane-based separation. Composite membranes derived from electrospun cellulose acetate (CA) fibers and diblock copolymer (DiBCP) PEO-b-P4VP were prepared to evaluate the adsorption of polyphenolic compounds from aqueous environments. The highly porous CA fibers were developed using the electrospinning technique, and the fabricated DiBCP/CA membranes were characterized using scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDS), X-ray photoelectron spectroscopy (XPS), Fourier-transform infrared (FT-IR) spectroscopy, and tensile testing. Finally, the ability of the composite membranes to adsorb the soluble polyphenolic compounds catechol (CAT) and gallic acid (GA), from a wetland environment, was studied via batch adsorption experiments and by solid-phase extraction (SPE). Results revealed a successful recovery of both polyphenols, at concentrations within the parts per million (ppm) range, from the aqueous media. This suggests a novel approach to recover these compounds to prevent their transformation into toxic pollutants upon entrance to water environments.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要