Rice extra-large G proteins play pivotal roles in controlling disease resistance and yield-related traits

NEW PHYTOLOGIST(2022)

Cited 7|Views7
No score
Abstract
To better explore the potential of rice extra-large G (XLG) proteins in future breeding, we characterised the function of OsXLG1, OsXLG2 and OsXLG3 in disease resistance. Loss-of-function Osxlg2 and Osxlg3 mutants showed reduced resistance to the fungal pathogen Magnaporthe oryzae, whereas Osxlg1 mutants were specifically compromised in resistance to the bacterial pathogen Xanthomonas oryzae pv oryzae. Consistent with their effects on rice blast resistance, mutations in OsXLG2 and OsXLG3 caused greater defects than did mutations in OsXLG1 for chitin-induced defence responses. All three OsXLGs interacted with components of a surface immune receptor complex composed of OsCERK1, OsRLCK176 and OsRLCK185. Further characterisation of yield-related traits showed that the Osxlg3 mutants displayed reduced plant height, panicle length and 1000grain weight, whereas Osxlg1 mutants exhibited increased plant height, panicle length and 1000-grain weight. Together the study shows the differential contributions of the three OsXLG proteins to disease resistance to fungal and bacterial pathogens, their yield-related traits and provides insights for future improvement of rice production.
More
Translated text
Key words
agronomic traits, disease resistance, plant immunity, rice, XLG protein
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined