Relation Selective Graph Convolutional Network for Skeleton-Based Action Recognition

SYMMETRY-BASEL(2021)

引用 5|浏览3
暂无评分
摘要
Graph convolutional networks (GCNs) have made significant progress in the skeletal action recognition task. However, the graphs constructed by these methods are too densely connected, and the same graphs are used repeatedly among channels. Redundant connections will blur the useful interdependencies of joints, and the overly repetitive graphs among channels cannot handle changes in joint relations between different actions. In this work, we propose a novel relation selective graph convolutional network (RS-GCN). We also design a trainable relation selection mechanism. It encourages the model to choose solid edges to work and build a stable and sparse topology of joints. The channel-wise graph convolution and multiscale temporal convolution are proposed to strengthening the model's representative power. Furthermore, we introduce an asymmetrical module named the spatial-temporal attention module for more stable context modeling. Combining those changes, our model achieves state-of-the-art performance on three public benchmarks, namely NTU-RGB+D, NTU-RGB+D 120, and Northwestern-UCLA.
更多
查看译文
关键词
human skeleton, action recognition, graph convolutional networks
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要