Canonical purification of evaporating black holes

PHYSICAL REVIEW D(2022)

引用 11|浏览2
暂无评分
摘要
We show that the canonical purification of an evaporating black hole after the Page time consists of a short, connected, Lorentzian wormhole between two asymptotic boundaries, one of which is unitarily related to the radiation. This provides a quantitative and general realization of the predictions of ER = EPR in an evaporating black hole after the Page time; this further gives a standard AdS/CFT calculation of the entropy of the radiation (without modifications of the homology constraint). Before the Page time, the canonical purification consists of two disconnected, semiclassical black holes. From this, we construct two bipartite entangled holographic CFT states, with equal (and large) amount of entanglement, where the semiclassical dual of one has a connected ERB and the other does not. From this example, we speculate that measures of multipartite entanglement may offer a more complete picture into the emergence of spacetime.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要