Nanosurgical Manipulation of Titin and Its M-Complex

NANOMATERIALS(2022)

引用 6|浏览11
暂无评分
摘要
Titin is a multifunctional filamentous protein anchored in the M-band, a hexagonally organized supramolecular lattice in the middle of the muscle sarcomere. Functionally, the M-band is a framework that cross-links myosin thick filaments, organizes associated proteins, and maintains sarcomeric symmetry via its structural and putative mechanical properties. Part of the M-band appears at the C-terminal end of isolated titin molecules in the form of a globular head, named here the "M-complex", which also serves as the point of head-to-head attachment of titin. We used high-resolution atomic force microscopy and nanosurgical manipulation to investigate the topographical and internal structure and local mechanical properties of the M-complex and its associated titin molecules. We find that the M-complex is a stable structure that corresponds to the transverse unit of the M-band organized around the myosin thick filament. M-complexes may be interlinked into an M-complex array that reflects the local structural and mechanical status of the transversal M-band lattice. Local segments of titin and the M-complex could be nanosurgically manipulated to achieve extension and domain unfolding. Long threads could be pulled out of the M-complex, suggesting that it is a compact supramolecular reservoir of extensible filaments. Nanosurgery evoked an unexpected volume increment in the M-complex, which may be related to its function as a mechanical spacer. The M-complex thus displays both elastic and plastic properties which support the idea that the M-band may be involved in mechanical functions within the muscle sarcomere.
更多
查看译文
关键词
atomic force microscopy, nanomanipulation, polymer extension, domain unfolding, mechanical stability, titin, molecular mechanics
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要