In Vitro Antibacterial Susceptibility of Different Pathogens to Thirty Nano-Polyoxometalates

PHARMACEUTICALS(2022)

引用 5|浏览8
暂无评分
摘要
Due to their unique properties, nano-polyoxometalates (POMs) can be alternative chemotherapeutic agents instrumental in designing new antibiotics. In this research, we synthesized and characterized "smart" nanocompounds and validated their antibacterial effects in order to formulate and implement potential new drugs. We characterized thirty POMs in terms of antibacterial activity-structure relationship. The antibacterial effects of these compounds are directly dependent upon their structure and the type of bacterial strain tested. We identified three POMs that presented sound antibacterial activity against S. aureus, B. cereus, E. coli, S. enteritidis and P. aeruginosa strains. A newly synthesized compound K-6[(VO)SiMo2W9O39]center dot 11H(2)O (POM 7) presented antibacterial activity only against S. aureus (ATCC 6538P). Twelve POMs exerted antibacterial effects against both Gram-positive and Gram-negative strains. Only one POM (a cluster derivatized with organometallic fragments) exhibited a stronger effect compared to amoxicillin. New studies in terms of selectivity and specificity are required to clarify these extremely important aspects needed to be considered in drug design.
更多
查看译文
关键词
nano-polyoxometalates, UV, FTIR and NMR spectroscopy, drug designs, antibacterial activity, Gram-positive bacteria, Gram-negative bacteria
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要