Improving Grain Yield via Promotion of Kernel Weight in High Yielding Winter Wheat Genotypes

BIOLOGY-BASEL(2022)

Cited 5|Views13
No score
Abstract
Simple Summary Improving plant net photosynthetic rates and accelerating water-soluble carbohydrate accumulation play an important role in increasing the carbon sources for wheat kernel growth and yield. The objective of this study was to quantify the relative yield contribution by analyzing the photosynthesis rate of flag leaf, water-soluble carbohydrate content of flag leaf, flag leaf sheath and stem, and other agronomic and physiological traits in 15 wheat cultivars released in Shandong Province, China between 1969 and 2006. Our results suggest that increase of flag leaf photosynthesis and WSC had a positive effect of 0.593 on the TKW, and thus benefit for developing high yielding wheat cultivars. Improving plant net photosynthetic rates and accelerating water-soluble carbohydrate accumulation play an important role in increasing the carbon sources for yield formation of wheat (Triticum aestivum L.). Understanding and quantify the contribution of these traits to grain yield can provide a pathway towards increasing the yield potential of wheat. The objective of this study was to identify kernel weight gap for improving grain yield in 15 winter wheat genotypes grown in Shandong Province, China. A cluster analysis was conducted to classify the 15 wheat genotypes into high yielding (HY) and low yielding (LY) groups based on their performance in grain yield, harvest index, photosynthetic rate, kernels per square meter, and spikes per square meter from two years of field testing. While the grain yield was significantly higher in the HY group, its thousand kernel weight (TKW) was 8.8% lower than that of the LY group (p < 0.05). A structural equation model revealed that 83% of the total variation in grain yield for the HY group could be mainly explained by TKW, the flag leaf photosynthesis rate at the grain filling stage (Pn75), and flag leaf water-soluble carbohydrate content (WSC) at grain filling stage. Their effect values on yield were 0.579, 0.759, and 0.444, respectively. Our results suggest that increase of flag leaf photosynthesis and WSC could improve the TKW, and thus benefit for developing high yielding wheat cultivars.
More
Translated text
Key words
wheat,grain yield,kernel weight,photosynthetic rate,water-soluble carbohydrate
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined