Presence of a Mitovirus Is Associated with Alteration of the Mitochondrial Proteome, as Revealed by Protein-Protein Interaction (PPI) and Co-Expression Network Models in Chenopodium quinoa Plants

BIOLOGY-BASEL(2022)

引用 4|浏览16
暂无评分
摘要
Simple Summary Plants often harbor persistent plant virus infection transmitted only vertically through seeds, resulting in no obvious symptoms (cryptic infections). Several studies have shown that such cryptic infections provide resilience against abiotic (and biotic) stress. We have recently discovered a new group of cryptic plant viruses infecting mitochondria (plant mitovirus). Mitochondria are cellular organelles displaying a pivotal role in protecting cells from the stress of nature . Here, we look at the proteomic alterations caused by the mitovirus cryptic infection of Chenopodium quinoa by Systems Biology approaches allowing one to evaluate data at holistic level. Quinoa is a domesticated plant species with many exciting features of abiotic stress resistance, and it is distinguished by its exceptional nutritional characteristics, such as the content and quality of proteins, minerals, lipids, and tocopherols. These features determined the growing interest for the quinoa crop by the scientific community and international organizations since they provide opportunities to produce high-value grains in arid, high-salt and high-UV agroecological environments. We discovered that quinoa lines hosting mitovirus activate some metabolic processes that might help them face drought. These findings present a new perspective for breeding crop plants through the augmented genome provided by accessory cryptic viruses to be investigated in the future. Plant mitoviruses belong to Mitoviridae family and consist of positive single-stranded RNA genomes replicating exclusively in host mitochondria. We previously reported the biological characterization of a replicating plant mitovirus, designated Chenopodium quinoa mitovirus 1 (CqMV1), in some Chenopodium quinoa accessions. In this study, we analyzed the mitochondrial proteome from leaves of quinoa, infected and not infected by CqMV1. Furthermore, by protein-protein interaction and co-expression network models, we provided a system perspective of how CqMV1 affects mitochondrial functionality. We found that CqMV1 is associated with changes in mitochondrial protein expression in a mild but well-defined way. In quinoa-infected plants, we observed up-regulation of functional modules involved in amino acid catabolism, mitochondrial respiratory chain, proteolysis, folding/stress response and redox homeostasis. In this context, some proteins, including BCE2 (lipoamide acyltransferase component of branched-chain alpha-keto acid dehydrogenase complex), DELTA-OAT (ornithine aminotransferase) and GR-RBP2 (glycine-rich RNA-binding protein 2) were interesting because all up-regulated and network hubs in infected plants; together with other hubs, including CAT (catalase) and APX3 (L-ascorbate peroxidase 3), they play a role in stress response and redox homeostasis. These proteins could be related to the higher tolerance degree to drought we observed in CqMV1-infected plants. Although a specific causative link could not be established by our experimental approach at this stage, the results suggest a new mechanistic hypothesis that demands further in-depth functional studies.
更多
查看译文
关键词
proteomics, mitochondrion, PPI, co-expression, network, virus, quinoa, systems biology
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要