Chrome Extension
WeChat Mini Program
Use on ChatGLM

Ozone for SARS-CoV-2 inactivation on surfaces and in liquid cell culture media

Chedly Tizaoui, Richard Stanton, Evelina Statkute, Anzelika Rubina, Edward Lester-Card, Anthony Lewis, Peter Holliman,Dave Worsley

Journal of Hazardous Materials(2022)

Cited 20|Views12
No score
Abstract
This study evaluated the inactivation of SARS-CoV-2, the virus responsible for COVID-19, by ozone using virus grown in cell culture media either dried on surfaces (plastic, glass, stainless steel, copper, and coupons of ambulance seat and floor) or suspended in liquid. Treatment in liquid reduced SARS-CoV-2 at a rate of 0.92 +/- 0.11 log(10)-reduction per ozone CT dose(mg min/L); where CT is ozone concentration times exposure time. On surface, the synergistic effect of CT and relative humidity (RH) was key to virus inactivation; the rate varied from 0.01 to 0.27 log(10)-reduction per ozone CT value(g min/m(3)) as RH varied from 17% to 70%. Depletion of ozone by competitive reactions with the medium constituents, mass transfer limiting the penetration of ozone to the bulk of the medium, and occlusion of the virus in dried matrix were postulated as potential mechanisms that reduce ozone efficacy. RH70% was found plausible since it provided the highest disinfection rate while being below the critical RH that promotes mould growth in buildings. In conclusion, through careful choice of (CT, RH), gaseous ozone is effective against SARS-CoV-2 and our results are of significance to a growing field where ozone is applied to control the spread of COVID-19.
More
Translated text
Key words
SARS-CoV-2,Ozone,Disinfection,Sanitisation,Virus
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined