The ss-ketoadipate pathway of Acinetobacter baumannii is involved in complement resistance and affects resistance against aromatic antibiotics

ENVIRONMENTAL MICROBIOLOGY REPORTS(2022)

引用 7|浏览4
暂无评分
摘要
Acinetobacter baumannii can thrive on a broad range of substrates such as sugars, alcohols, lipids, amino acids and aromatic compounds. The latter three are abundant in the human host and are potential candidates as carbon sources for the metabolic adaptation of A. baumannii to the human host. In this study we determined the biodegradative activities of A. baumannii AYE with monocyclic aromatic compounds. Deletion of genes encoding the key enzymes of the ss-ketoadipate pathway, the protocatechuate-3,4-dioxygenase (Delta pcaHG) and the catechol-1,2-dioxygenase (Delta catA), led to a complete loss of growth on benzoate and p-hydroxybenzoate, suggesting that these substrates are metabolized via the two distinct branches (pca and cat) of this pathway. Furthermore, we investigated the potential role of these gene products in host adaptation by analyzing the capability of the mutants to resist complement-mediated killing. These studies revealed that the mutants exhibit a decreased complement resistance, but a dramatic increase in survival in normal human serum in the presence of p-hydroxybenzoate or protocatechuate. These results indicate that the ss-ketoadipate pathway plays a role in adaptation of A. baumannii to the human host. Moreover, the single and double mutants exhibited increased antibiotic resistances indicating a link between the two dioxygenases and antibiotic resistance.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要