Pooled genetic perturbation screens with image-based phenotypes

NATURE PROTOCOLS(2022)

引用 16|浏览9
暂无评分
摘要
Discovery of the genetic components underpinning fundamental and disease-related processes is being rapidly accelerated by combining efficient, programmable genetic engineering with phenotypic readouts of high spatial, temporal and/or molecular resolution. Microscopy is a fundamental tool for studying cell biology, but its lack of high-throughput sequence readouts hinders integration in large-scale genetic screens. Optical pooled screens using in situ sequencing provide massively scalable integration of barcoded lentiviral libraries (e.g., CRISPR perturbation libraries) with high-content imaging assays, including dynamic processes in live cells. The protocol uses standard lentiviral vectors and molecular biology, providing single-cell resolution of phenotype and engineered genotype, scalability to millions of cells and accurate sequence reads sufficient to distinguish >10 6 perturbations. In situ amplification takes ~2 d, while sequencing can be performed in ~1.5 h per cycle. The image analysis pipeline provided enables fully parallel automated sequencing analysis using a cloud or cluster computing environment.
更多
查看译文
关键词
CRISPR-Cas9 genome editing,Functional genomics,High-throughput screening,Microscopy,Life Sciences,general,Biological Techniques,Analytical Chemistry,Microarrays,Computational Biology/Bioinformatics,Organic Chemistry
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要