Modulation of CD22 protein expression in childhood leukemia by pervasive splicing aberrations: Implications for CD22-directed immunotherapies

BLOOD CANCER DISCOVERY(2022)

引用 26|浏览29
暂无评分
摘要
Downregulation of surface epitopes causes postimmunotherapy relapses in B-lymphoblastic leukemia (B-ALL). Here we demonstrate that mRNA encoding CD22 undergoes aberrant splicing in B-ALL. We describe the plasma membrane-bound CD22 Delta ex5-6 splice iso-form, which is resistant to chimeric antigen receptor (CAR) T cells targeting the third immunoglobulin-like domain of CD22. We also describe splice variants skipping the AUG-containing exon 2 and failing to produce any identifiable protein, thereby defining an event that is rate limiting for epitope presentation. Indeed, forcing exon 2 skipping with morpholino oligonucleotides reduced CD22 protein expression and conferred resistance to the CD22-directed antibody-drug conjugate inotuzumab ozogamicin in vitro. Furthermore, among inotuzumab-treated pediatric patients with B-ALL, we identified one nonresponder in whose leukemic blasts Delta ex2 isoforms comprised the majority of CD22 transcripts. In a second patient, a sharp reduction in CD22 protein levels during relapse was driven entirely by increased CD22 exon 2 skipping. Thus, dysregulated CD22 splicing is a major mechanism of epitope downregulation and ensuing resistance to immunotherapy. SIGNIFICANCE: The mechanism(s) underlying downregulation of surface CD22 following CD22-directed immunotherapy remains underexplored. Our biochemical and correlative studies demonstrate that in B-ALL, CD22 expression levels are controlled by inclusion/skipping of CD22 exon 2. Thus, aberrant splicing of CD22 is an important driver/biomarker of de novo and acquired resistance to CD22-directed immunotherapies.
更多
查看译文
关键词
cd22 protein expression,childhood leukemia,pervasive splicing aberrations
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要