Functional analysis of the stable phosphoproteome reveals cancer vulnerabilities

BIOINFORMATICS(2022)

引用 1|浏览10
暂无评分
摘要
Motivation: The advance of mass spectrometry-based technologies enabled the profiling of the phosphoproteomes of a multitude of cell and tissue types. However, current research primarily focused on investigating the phosphorylation dynamics in specific cell types and experimental conditions, whereas the phosphorylation events that are common across cell/tissue types and stable regardless of experimental conditions are, so far, mostly ignored. Results: Here, we developed a statistical framework to identify the stable phosphoproteome across 53 human phosphoproteomics datasets, covering 40 cell/tissue types and 194 conditions/treatments. We demonstrate that the stably phosphorylated sites (SPSs) identified from our statistical framework are evolutionarily conserved, functionally important and enriched in a range of core signaling and gene pathways. Particularly, we show that SPSs are highly enriched in the RNA splicing pathway, an essential cellular process in mammalian cells, and frequently disrupted by cancer mutations, suggesting a link between the dysregulation of RNA splicing and cancer development through mutations on SPSs. Availability and implementation: The source code for data analysis in this study is available from Github repository https://github.com/PYangLab/SPSs under the open-source license of GPL-3. The data used in this study are publicly available (see Section 2.8). Contact: pengyi.yang@sydney.edu.au Supplementary information: Supplementary data are available at Bioinformatics online.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要