Uptake and transport of steroid estrogens in soil-plant systems and their dissipation in rhizosphere: Influence factors and mechanisms

Journal of Hazardous Materials(2022)

Cited 7|Views14
No score
Abstract
Residual steroid estrogens (SEs) in soil may be absorbed by plants, and subsequently threaten human health via food chains. However, the environmental behavior of SEs in soil-plant systems remains unclear. In this study, a wheat pot experiment using rhizosphere bags was performed to investigate the uptake and dissipation of target SEs (17 beta-estradiol (E2) and estrone (E1)) in different soils. The results indicated that soils with higher organic matter and silt and clay reduced the plant uptake of estrogens. Compared with E1, E2 was less accumulated in plants, which was mainly correlated with its higher hydrophobicity and shorter half-life. Estrogens tended to concentrate in the plant roots instead of translocating to the shoots. In addition, plant cultivation enhanced estrogen dissipation in the rhizosphere with an improvement of 10–21%. This improvement mainly resulted from stimulating the activities of estrogen-degrading enzymes, increasing the total bacterial populations, and promoting the development of estrogen degraders. Furthermore, this promotion effect will increase with plant growth. These findings will help us understand the characteristics of SEs taken up by plants and the role of the rhizosphere in SEs elimination, and provide theoretical insights into reducing the pollution risk of SEs in agricultural soils.
More
Translated text
Key words
Steroid estrogens,Plant uptake,Soil-plant systems,Rhizosphere,Bacterial community
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined