Interpretable Autoencoders Trained on Single Cell Sequencing Data Can Transfer Directly to Data from Unseen Tissues

CELLS(2022)

引用 3|浏览19
暂无评分
摘要
Autoencoders have been used to model single-cell mRNA-sequencing data with the purpose of denoising, visualization, data simulation, and dimensionality reduction. We, and others, have shown that autoencoders can be explainable models and interpreted in terms of biology. Here, we show that such autoencoders can generalize to the extent that they can transfer directly without additional training. In practice, we can extract biological modules, denoise, and classify data correctly from an autoencoder that was trained on a different dataset and with different cells (a foreign model). We deconvoluted the biological signal encoded in the bottleneck layer of scRNA-models using saliency maps and mapped salient features to biological pathways. Biological concepts could be associated with specific nodes and interpreted in relation to biological pathways. Even in this unsupervised framework, with no prior information about cell types or labels, the specific biological pathways deduced from the model were in line with findings in previous research. It was hypothesized that autoencoders could learn and represent meaningful biology; here, we show with a systematic experiment that this is true and even transcends the training data. This means that carefully trained autoencoders can be used to assist the interpretation of new unseen data.
更多
查看译文
关键词
autoencoders (AE), single-cell mRNA-sequencing data, transfer learning, deep learning, artificial neural networks
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要