Chrome Extension
WeChat Mini Program
Use on ChatGLM

Cosmogenic production of 37Ar in the context of the LUX-ZEPLIN experiment

J. Aalbers,D. S. Akerib,A. K. Al Musalhi,F. Alder,S. K. Alsum,C. S. Amarasinghe,A. Ames,T. J. Anderson,N. Angelides, H. M. Araujo,J. E. Armstrong,M. Arthurs,X. Bai,A. Baker,J. Balajthy,S. Balashov,J. Bang,J. W. Bargemann,D. Bauer,A. Baxter,K. Beattie,E. P. Bernard,A. Bhatti,A. Biekert,T. P. Biesiadzinski,H. J. Birch,G. M. Blockinger,E. Bodnia,B. Boxer,C. A. J. Brew, P. Bras,S. Burdin,J. K. Busenitz,M. Buuck,R. Cabrita,M. C. Carmona-Benitez,M. Cascella,C. Chan,A. Chawla, H. Chen,N. Chott,A. Cole,M. Converse,A. Cottle,G. Cox,O. Creaner,J. E. Cutter,C. E. Dahl,A. David,L. de Viveiros,J. E. Y. Dobson,E. Druszkiewicz,S. R. Eriksen,A. Fan,S. Fayer,N. M. Fearon,S. Fiorucci,H. Flaecher,E. D. Fraser,T. Fruth,R. J. Gaitskell,J. Genovesi,C. Ghag,E. Gibson,M. G. D. Gilchriese,S. Gokhale,M. G. D. van der Grinten,C. B. Gwilliam,C. R. Hall,S. J. Haselschwardt,S. A. Hertel,M. Horn,D. Q. Huang,D. Hunt,C. M. Ignarra,O. Jahangir,R. S. James,W. Ji,J. Johnson,A. C. Kaboth, A. C. Kamaha,K. Kamdin,D. Khaitan,A. Khazov,I Khurana,D. Kodroff,L. Korley,E. Korolkova,H. Kraus,S. Kravitz,L. Kreczko,V. A. Kudryavtsev,E. A. Leason,D. S. Leonard,K. T. Lesko,C. Levy, J. Lee,J. Lin,A. Lindote,R. Linehan,W. H. Lippincott,X. Liu,M. Lopes,E. Lopez Asamar,B. Lopez-Paredes,W. Lorenzon,S. Luitz,P. A. Majewski,A. Manalaysay,L. Manenti,R. L. Mannino,N. Marangou,M. E. McCarthy,D. N. McKinsey,J. McLaughlin,E. H. Miller, E. Mizrachi,A. Monte,M. E. Monzani,J. A. Morad,J. D. Morales Mendoza,E. Morrison,B. J. Mount,A. St J. Murphy,D. Naim,A. Naylor,C. Nedlik,H. N. Nelson,F. Neves,J. A. Nikoleyczik,A. Nilima,I Olcina, K. Oliver-Mallory,S. Pal,K. J. Palladino,J. Palmer,N. Parveen,S. J. Patton,E. K. Pease,B. Penning,G. Pereira,E. Perry, J. Pershing,A. Piepke,D. Porzio,Y. Qie,J. Reichenbacher,C. A. Rhyne,A. Richards,Q. Riffard,G. R. C. Rischbieter,R. Rosero,P. Rossiter,T. Rushton,D. Santone,A. B. M. R. Sazzad,R. W. Schnee,P. R. Scovell,S. Shaw,T. A. Shutt, J. J. Silk,C. Silva,G. Sinev,R. Smith,M. Solmaz,V. N. Solovov,P. Sorensen,J. Soria,I Stancu,A. Stevens,K. Stifter,B. Suerfu,T. J. Sumner,N. Swanson,M. Szydagis,W. C. Taylor,R. Taylor,D. J. Temples,P. A. Terman,D. R. Tiedt,M. Timalsina,W. H. To,Z. Tong,D. R. Tovey,M. Trask,M. Tripathi,D. R. Tronstad,W. Turner,U. Utku,A. Vaitkus,B. Wang,Y. Wang,J. J. Wang,W. Wang,J. R. Watson,R. C. Webb,R. G. White,T. J. Whitis,M. Williams,F. L. H. Wolfs,S. Woodford,D. Woodward,C. J. Wright,Q. Xia,X. Xiang,J. Xu,M. Yeh

PHYSICAL REVIEW D(2022)

Cited 8|Views62
No score
Abstract
We estimate the amount of Ar-37 produced in natural xenon via cosmic-my-induced spallation, an inevitable consequence of the transportation and storage of xenon on the Earth's surface. We then calculate the resulting Ar-37 concentration in a 10-tonne payload (similar to that of the LUX-ZEPLIN experiment) assuming a representative schedule of xenon purification, storage, and delivery to the underground facility. Using the spallation model by Silberberg and Tsao, the sea-level production rate of Ar-37 in natural xenon is estimated to be 0.024 atoms/kg/day. Assuming the xenon is successively purified to remove radioactive contaminants in 1-tonne batches at a rate of 1 tonne/month, the average Ar-37 activity after 10 tons are purified and transported underground is 0.058 - 0.090 mu Bq/kg, depending on the degree of argon removal during above-ground purification. Such cosmogenic Ar-37 will appear as a noticeable background in the early science data, while decaying with a 35-day half-life. This newly noticed production mechanism of Ar-37 should be considered when planning for future liquid-xenon-based experiments.
More
Translated text
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined