Multipath Cross Graph Convolution for Knowledge Representation Learning

COMPUTATIONAL INTELLIGENCE AND NEUROSCIENCE(2021)

引用 1|浏览1
暂无评分
摘要
In the past, most of the entity prediction methods based on embedding lacked the training of local core relationships, resulting in a deficiency in the end-to-end training. Aiming at this problem, we propose an end-to-end knowledge graph embedding representation method. It involves local graph convolution and global cross learning in this paper, which is called the TransC graph convolutional network (TransC-GCN). Firstly, multiple local semantic spaces are divided according to the largest neighbor. Secondly, a translation model is used to map the local entities and relationships into a cross vector, which serves as the input of GCN. Thirdly, through training and learning of local semantic relations, the best entities and strongest relations are found. The optimal entity relation combination ranking is obtained by evaluating the posterior loss function based on the mutual information entropy. Experiments show that this paper can obtain local entity feature information more accurately through the convolution operation of the lightweight convolutional neural network. Also, the maximum pooling operation helps to grasp the strong signal on the local feature, thereby avoiding the globally redundant feature. Compared with the mainstream triad prediction baseline model, the proposed algorithm can effectively reduce the computational complexity while achieving strong robustness. It also increases the inference accuracy of entities and relations by 8.1% and 4.4%, respectively. In short, this new method can not only effectively extract the local nodes and relationship features of the knowledge graph but also satisfy the requirements of multilayer penetration and relationship derivation of a knowledge graph.
更多
查看译文
关键词
knowledge representation learning,knowledge representation
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要