Optimized splitting of mixed-species RNA sequencing data

JOURNAL OF BIOINFORMATICS AND COMPUTATIONAL BIOLOGY(2022)

引用 1|浏览9
暂无评分
摘要
Gene expression studies using xenograft transplants or co-culture systems, usually with mixed human and mouse cells, have proven to be valuable to uncover cellular dynamics during development or in disease models. However, the mRNA sequence similarities among species presents a challenge for accurate transcript quantification. To identify optimal strategies for analyzing mixed-species RNA sequencing data, we evaluate both alignment-dependent and alignment-independent methods. Alignment of reads to a pooled reference index is effective, particularly if optimal alignments are used to classify sequencing reads by species, which are realigned with individual genomes, generating >97% accuracy across a range of species ratios. Alignment-independent methods, such as convolutional neural networks, which extract the conserved patterns of sequences from two species, classify RNA sequencing reads with over 85% accuracy. Importantly, both methods perform well with different ratios of human and mouse reads. While non-alignment strategies successfully partitioned reads by species, a more traditional approach of mixed-genome alignment followed by optimized separation of reads proved to be the more successful with lower error rates.
更多
查看译文
关键词
RNA sequencing, xenograft, alignment, convolutional neural networks
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要