IoT-Fog-Cloud Centric Earthquake Monitoring and Prediction

ACM Transactions on Embedded Computing Systems(2021)

引用 2|浏览15
暂无评分
摘要
AbstractEarthquakes are among the most inevitable natural catastrophes. The uncertainty about the severity of the earthquake has a profound effect on the burden of disaster and causes massive economic and societal losses. Although unpredictable, it can be expected to ameliorate damage and fatalities, such as monitoring and predicting earthquakes using the Internet of Things (IoT). With the resurgence of the IoT, an emerging innovative approach is to integrate IoT technology with Fog and Cloud Computing to augment the effectiveness and accuracy of earthquake monitoring and prediction. In this study, the integrated IoT-Fog-Cloud layered framework is proposed to predict earthquakes using seismic signal information. The proposed model is composed of three layers: (i) at sensor layer, seismic data are acquired, (ii) fog layer incorporates pre-processing, feature extraction using fast Walsh–Hadamard transform (FWHT), selection of relevant features by applying High Order Spectral Analysis (HOSA) to FWHT coefficients, and seismic event classification by K-means accompanied by real-time alert generation, (iii) at cloud layer, an artificial neural network (ANN) is employed to forecast the magnitude of an earthquake. For performance evaluation, K-means classification algorithm is collated with other well-known classification algorithms from the perspective of accuracy and execution duration. Implementation statistics indicate that with chosen HOS features, we have been able to attain high accuracy, precision, specificity, and sensitivity values of 93.30%, 96.65%, 90.54%, and 92.75%, respectively. In addition, the ANN provides an average correct magnitude prediction of 75%. The findings ensured that the proposed framework has the potency to classify seismic signals and predict earthquakes and could therefore further enhance the detection of seismic activities. Moreover, the generation of real-time alerts further amplifies the effectiveness of the proposed model and makes it more real-time compatible.
更多
查看译文
关键词
Earthquake,Internet of Things (IoT),Cloud Computing,Fog Computing,FWHT,bispectrum,bicoherence,higher order spectral analysis (HOSA),K-means,artificial neural network (ANN)
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要