Combining experimental and computational techniques to understand and improve dry powder inhalers.

EXPERT OPINION ON DRUG DELIVERY(2022)

引用 6|浏览9
暂无评分
摘要
INTRODUCTION:Dry Powder Inhalers (DPIs) continue to be developed to deliver an expanding range of drugs to treat an ever-increasing range of medical conditions; with each drug and device combination needing a specifically designed inhaler. Fast regulatory approval is essential to be first to market, ensuring commercial profitability. AREAS COVERED:In vitro deposition, particle image velocimetry, and computational modeling using the physiological geometry and representative anatomy can be combined to give complementary information to determine the suitability of a proposed inhaler design and to optimize its formulation performance. In combination, they allow the entire range of questions to be addressed cost-effectively and rapidly. EXPERT OPINION:Experimental techniques and computational methods are improving rapidly, but each needs a skilled user to maximize results obtained from these techniques. Multidisciplinary teams are therefore key to making optimal use of these methods and such qualified teams can provide enormous benefits to pharmaceutical companies to improve device efficacy and thus time to market. There is already a move to integrate the benefits of Industry 4.0 into inhaler design and usage, a trend that will accelerate.
更多
查看译文
关键词
Computational fluid dynamics (CFD), dry powder inhaler (DPI) design, high-speed imaging, in vitro deposition, particle dynamics, particle image velocimetry (PIV)
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要