Chrome Extension
WeChat Mini Program
Use on ChatGLM

Development of a powerful synthetic hybrid promoter to improve the cellulase system of Trichoderma reesei for efficient saccharification of corncob residues

MICROBIAL CELL FACTORIES(2022)

Cited 6|Views18
No score
Abstract
Background The filamentous fungus Trichoderma reesei is a widely used workhorse for cellulase production in industry due to its prominent secretion capacity of extracellular cellulolytic enzymes. However, some key components are not always sufficient in this cellulase cocktail, making the conversion of cellulose-based biomass costly on the industrial scale. Development of strong and efficient promoters would enable cellulase cocktail to be optimized for bioconversion of biomass. Results In this study, a synthetic hybrid promoter was constructed and applied to optimize the cellulolytic system of T. reesei for efficient saccharification towards corncob residues. Firstly, a series of 5’ truncated promoters in different lengths were established based on the strong constitutive promoter P cdna1 . The strongest promoter amongst them was P cdna1-3 (− 640 to − 1 bp upstream of the translation initiation codon ATG), exhibiting a 1.4-fold higher activity than that of the native cdna1 promoter. Meanwhile, the activation region (− 821 to − 622 bp upstream of the translation initiation codon ATG and devoid of the Cre1-binding sites) of the strong inducible promoter P cbh1 was cloned and identified to be an amplifier in initiating gene expression. Finally, this activation region was fused to the strongest promoter P cdna1-3 , generating the novel synthetic hybrid promoter P cc . This engineered promoter P cc drove strong gene expression by displaying 1.6- and 1.8-fold stronger fluorescence intensity than P cbh1 and P cdna1 under the inducible condition using egfp as the reporter gene, respectively. Furthermore, P cc was applied to overexpress the Aspergillus niger β-glucosidase BGLA coding gene bglA and the native endoglucanase EG2 coding gene eg2 , achieving 43.5-fold BGL activity and 1.2-fold EG activity increase, respectively. Ultimately, to overcome the defects of the native cellulase system in T. reesei, the bglA and eg2 were co-overexpressed under the control of P cc promoter. The bglA - eg2 double expression strain QPEB70 exhibited a 178% increase in total cellulase activity, whose cellulase system displayed 2.3- and 2.4-fold higher saccharification efficiency towards acid-pretreated and delignified corncob residues than the parental strain, respectively. Conclusions The synthetic hybrid promoter P cc was generated and employed to improve the cellulase system of T. reesei by expressing specific components. Therefore, construction of synthetic hybrid promoters would allow particular cellulase genes to be expressed at desired levels, which is a viable strategy to optimize the cellulolytic enzyme system for efficient biomass bioconversion.
More
Translated text
Key words
Synthetic hybrid promoter, Trichoderma reesei, cbh1, cdna1, Cellulase, Biomass bioconversion
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined