Mandatory coupling of zygotic transcription to DNA replication in early Drosophila embryos

Chun-Yi Cho,James P. Kemp, Robert J. Duronio,Patrick H. O’Farrell

biorxiv(2022)

引用 0|浏览5
暂无评分
摘要
Collisions between transcribing RNA polymerases and DNA replication forks are disruptive. The threat of collisions is particularly acute during the rapid early embryonic cell cycles of Drosophila when S phase occupies the entirety of interphase. We hypothesized that collision-avoidance mechanisms safeguard the onset of zygotic transcription in these cycles. To explore this hypothesis, we used real-time imaging of transcriptional events at the onset of each interphase. Endogenously tagged RNA polymerase II (RNAPII) abruptly formed clusters before nascent transcripts accumulated, indicating recruitment prior to transcriptional engagement. Injection of inhibitors of DNA replication prevented RNAPII clustering, blocked formation of foci of the pioneer factor Zelda, and largely prevented expression of transcription reporters. Knockdown of Zelda or the histone acetyltransferase CBP prevented RNAPII cluster formation except at the replication-dependent (RD) histone gene locus. We suggest a model in which the passage of replication forks allows Zelda and a distinct pathway at the RD histone locus to reconfigure chromatin to nucleate RNAPII clustering and promote transcriptional initiation. The replication dependency of these events defers initiation of transcription and ensures that RNA polymerases transcribe behind advancing replication forks. The resulting coordination of transcription and replication explains how early embryos circumvent collisions and promote genome stability. ### Competing Interest Statement The authors have declared no competing interest.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要