Binary Pt/Te Nanoheterostructures with High Photothermal Conversion Efficiency and Anti-inflammatory Action for Enhanced Photothermal Therapy of 4T1 Breast Tumors Guided by Photoacoustic Imaging

ACS SUSTAINABLE CHEMISTRY & ENGINEERING(2022)

引用 3|浏览4
暂无评分
摘要
Photothermal therapy is a powerful candidate for tumor treatment. However, photothermal therapy still faces some challenges, such as lacking photothermal agents with high photothermal conversion efficiency and undesirable inflammatory responses, which may result in tumor recurrence and therapeutic resistance. Here, the Pt/Te nanoheterostructures (PT) were synthesized by a simple hydrothermal reaction. The photothermal conversion efficiency was up to 51.84%. The outstanding photothermal conversion capacity of PT was attributed to the unique localized surface plasmon resonance frequency of metals and semiconductors and the increased circuit paths of electron transitions from nanoheterostructures. After coating with the murine mammary carcinoma (4T1) cell membrane, the camouflaged PT (mPT) exhibits excellent biocompatibility and effective homologous targeting capacity. Benefiting from antioxidative activity, mPT can efficiently scavenge inflammation-related reactive oxygen species and cytokines (such as tumor necrosis factor (TNF)-alpha, interleukin (IL)-1 beta, and IL-6) caused by hyperthermia to alleviate inflammation in vitro and in vivo. The in vitro and in vivo therapeutic results showed that mPT could effectively inhibit 4T1 breast tumors. In addition, the in vivo therapy could be guided by photoacoustic imaging. These results demonstrated that these multifunctional mPT provide a paradigm for biomimetic metal and semiconductor nanoheterostructures for enhanced photothermal therapy and anti-inflammatory action on tumors.
更多
查看译文
关键词
nanoheterostructures, photothermal therapy, anti-inflammation, homology targeting, photoacoustic imaging
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要