谷歌浏览器插件
订阅小程序
在清言上使用

Efficiency of end effect probes for in-situ permittivity measurements in the 0.5–6 GHz frequency range and their application for organic soil horizons study

Sensors and Actuators A: Physical(2017)

引用 16|浏览17
暂无评分
摘要
The remote signatures measured at microwave frequency above land surfaces are strongly dependent on the permittivity of the soil, which is linked to its moisture content. Thus, soil permittivity is a key parameter when algorithms are developed for the retrieval of hydrologic parameters from remote sensing data. Soil permittivity measurements are generally carried out in the laboratory because in-situ measurements are more difficult to obtain. The study presents the development of two probes (N and SMA probes) for in situ soil permittivity measurements (i.e. measurements of dielectric properties). They are based on the end effect phenomenon of a coaxial waveguide and so are called end effect probes in this paper. Results obtained on well-known materials (water and polytetrafluoroethene) are compared with corresponding data obtained by laboratory approaches (Von Hippel’s method and resonant cavity) and show good agreement from 0.5GHz up to ∼3.5GHz and 6GHz for N and SMA probes respectively. Then measurements made on concrete and mineral soil are reported to underline the efficiency of end effect probes for in-situ dielectric measurements. Finally, through work undertaken in the framework of the European Space Agency’s SMOSHiLat project, we demonstrate the applicability of the two probes for measurements performed within these frequency ranges in complex material such as organic soil horizons.
更多
查看译文
关键词
Permittivity,End effect probe,Organic soil,Moisture,Remote sensing
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要