Self-propulsion with speed and orientation fluctuation: Exact computation of moments and dynamical bistabilities in displacement

PHYSICAL REVIEW E(2022)

Cited 2|Views0
No score
Abstract
We consider the influence of active speed fluctuations on the dynamics of a d-dimensional active Brownian particle performing a persistent stochastic motion. The speed fluctuation brings about a dynamical anisotropy even in the absence of shape anisotropy. We use the Laplace transform of the Fokker-Planck equation to obtain exact expressions for time-dependent dynamical moments. Our results agree with direct numerical simulations and show several dynamical crossovers determined by the activity, persistence, and speed fluctuation. The dynamical anisotropy leads to a subdiffusive scaling in the parallel component of displacement fluctuation at intermediate times. The kurtosis remains positive at short times determined by the speed fluctuation, crossing over to a negative minimum at intermediate times governed by the persistence before vanishing asymptotically. The probability distribution of particle displacement obtained from numerical simulations in two dimensions shows two crossovers between compact and extended trajectories via two bimodal distributions at intervening times. While the speed fluctuation dominates the first crossover, the second crossover is controlled by persistence like in the wormlike chain model of semiflexible polymers.
More
Translated text
Key words
dynamical bistabilities,orientation fluctuation,self-propulsion
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined