Using convolutional neural network and long short time memory to automatically detect aneurysm on 2D DSA images (Preprint)

semanticscholar

引用 0|浏览1
暂无评分
摘要
BACKGROUND It is hard to distinguish cerebral aneurysm from overlap vessels based on the 2D DSA images, for its lack the spatial information. OBJECTIVE The aim of this study is to construct a deep learning diagnostic system to improve the ability of detecting the PCoA aneurysm on 2D-DSA images and validate the efficiency of deep learning diagnostic system in 2D-DSA aneurysm detecting. METHODS We proposed a two stage detecting system. First, we established the regional localization stage (RLS) to automatically locate specific detection region of raw 2D-DSA sequences. And then, in the intracranial aneurysm detection stage (IADS) ,we build three different frames, RetinaNet, RetinaNet+LSTM, Bi-input+RetinaNet+LSTM, to detect the aneurysms. Each of the frame had fivefold cross-validation scheme. The area under curve (AUC), the receiver operating characteristic (ROC) curve, and mean average precision (mAP) were used to validate the efficiency of different frames. The sensitivity, specificity and accuracy were used to identify the ability of different frames. RESULTS 255 patients with PCoA aneurysms and 20 patients without aneurysm were included in this study. The best results of AUC of the RetinaNet, RetinaNet+LSTM, and Bi-input+RetinaNet+LSTM were 0.95, 0.96, and 0.97, respectively. The sensitivity of the RetinaNet, RetinaNet+LSTM, and Bi-input+RetinaNet+LSTM were 81.65% (59.40% to 94.76%), 87.91% (64.24% to 98.27%), 84.50% (69.57% to 93.97%), respectively. The specificity of the RetinaNet, RetinaNet+LSTM, and Bi-input+RetinaNet+LSTM were 88.89% (66.73% to 98.41%), 88.12% (66.06% to 98.08%), and 88.50% (74.44% to 96.39%), respectively. The accuracy of the RetinaNet, RetinaNet+LSTM, and Bi-input+RetinaNet+LSTM were 92.71% (71.29% to 99.54%), 89.42% (68.13% to 98.49%), and 91.00% (77.63% to 97.72%), respectively. CONCLUSIONS Two stage aneurysm detecting system can reduce time cost and the computation load. According to our results, more spatial and temporal information can help improve the performance of the frames, so that Bi-input+RetinaNet+LSTM has the best performance compared to other frames. And our study can demonstrate that our system was feasible to assist doctor to detect intracranial aneurysm on 2D-DSA images.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要