Regulating the effects of SnS shrinkage in all-solid-state lithium-ion batteries with excellent electrochemical performance

CHEMICAL ENGINEERING JOURNAL(2022)

引用 21|浏览11
暂无评分
摘要
Compatibility between the electrode and sulfide solid electrolyte has been a key challenge for the development of all-solid-state lithium-ion battery. Herein, controlled interface engineering strategy is proposed to stabilize the cycling performance by the shrinkage of SnS for the first time. Interestingly, it was found that the concentration of S-defects can be controlled during the SnS shrinkage in the carbon matrix enabled by the carbon thermal reduction. When applied in an all-solid-state battery, a superior electrochemical performance for the 1-SnS-600 sample was achieved, delivering a large gravimetric capacity (720.4 mA h g(-1) at 0.2 A g(-1) after 100 cycles). Even at the higher current densities of 0.5 and 1 A g(-1), the 1-SnS-600 electrode in all-solid-state lithium ion batteries (ASSLIBs) can deliver high discharge capacities of 509 and 410 mA h g(-1) after 100 cycles, respectively. Importantly, the full ASSLIB cell demonstrates a high energy density. Additionally, density functional theory and the Arrhenius equation calculations show that the 1-SnS-600 electrode provides the lowest Li+ insertion energy (-1.26 eV) and the lowest activation energy of 23.27 kJ mol(-1), respectively.
更多
查看译文
关键词
SnS,Interface Compatibility,Defects,Density-functional theory,All-solid-state Battery,Electrochemical Properties
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要