谷歌Chrome浏览器插件
订阅小程序
在清言上使用

Two hydrodynamic effects allow strongly nonlinear cochlear response with level-independent admittance

arXiv (Cornell University)(2021)

引用 0|浏览6
暂无评分
摘要
This paper discusses the role of 2-D/3-D cochlear fluid hydrodynamics in the generation of the large nonlinear dynamical range of the basilar membrane (BM) and pressure response, in the decoupling between cochlear gain and tuning, and in the dynamic stabilization of the high-gain BM response in the peak region. The large and closely correlated dependence on stimulus level of the BM velocity and fluid pressure gain (Dong and Olson, 2013), is consistent with a physiologically-oriented schematization of the outer hair cell (OHC) mechanism if two hydrodynamic effects are accounted for: amplification of the differential pressure associated with a focusing phenomenon, and viscous damping at the BM-fluid interface. The predictions of the analytical 2-D WKB approach are compared to solutions of a 3-D finite element model, showing that these hydrodynamic phenomena yield stable high-gain response in the peak region and a smooth transition among models with different effectiveness of the active mechanism, mimicking the cochlear nonlinear response over a wide stimulus level range. This study explains how an effectively anti-damping nonlinear OHC force may yield large BM and pressure dynamical ranges along with an almost level-independent admittance.
更多
查看译文
关键词
nonlinear cochlear response,hydrodynamic effects,level-independent
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要