Abstract—Continuous and unobtrusive blood pressure (BP) monitoring provides significant advantages in predicting the onset of cardiovascular disease. Bio-impedance sensing is a prominent method for continuous BP monitoring in a wearable form factor that can effectively measure blood pulsations

semanticscholar(2021)

引用 0|浏览0
暂无评分
摘要
Continuous and unobtrusive blood pressure (BP) monitoring provides significant advantages in predicting the onset of cardiovascular disease. Bio-impedance sensing is a prominent method for continuous BP monitoring in a wearable form factor that can effectively measure blood pulsations from the arteries and translate them into BP. However, assessing the quality of the bio-impedance signal captured from small electrodes placed on the skin is required to determine the accuracy of BP estimation. In wearable devices, frequent movements of the electrodes on the skin are expected which cause non-optimal contact quality between the electrodes and the skin. This can lead to high skin-electrode impedance which can cause saturation of the current injection module of the bioimpedance device. This phenomenon degrades the signal quality In this paper, we present an automatic gain control (AGC) circuit that controls the amplitude of the current injection into the body based on sensing the skin-electrode impedance to ensure injection of maximum current to maximize the signal-tonoise ratio (SNR) while avoiding saturation of the current injection module. In this work, the proposed AGC method shows higher quality of blood pulsation from bio-impedance signal measured from a human subject with 1.59 dB improvement in SNR which leads to a better estimation of blood pressure. Clinical Relevance— The proposed automatic gain control (AGC) circuit establishes a more accurate method of continuous blood pressure monitoring using bio-impedance.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要