SGBA: A stealthy scapegoat backdoor attack against deep neural networks

COMPUTERS & SECURITY(2024)

Cited 0|Views4
No score
Abstract
Outsourced deep neural networks have been demonstrated to suffer from patch-based trojan attacks, in which an adversary poisons the training sets to inject a backdoor in the obtained model so that regular inputs can be still labeled correctly while those carrying a specific trigger are falsely given a target label. Due to the severity of such attacks, many backdoor detection and containment systems have recently, been proposed for deep neural networks. One major category among them are various model inspection schemes, which hope to detect backdoors before deploying models from non-trusted third-parties. In this paper, we show that such state-of-the-art schemes can be defeated by a so-called Scapegoat Backdoor Attack, which introduces a benign scapegoat trigger in data poisoning to prevent the defender from reversing the real abnormal trigger. In addition, it confines the values of network parameters within the same variances of those from clean model during training, which further significantly enhances the difficulty of the defender to learn the differences between legal and illegal models through machine-learning approaches. Our experiments on 3 popular datasets show that it can escape detection by all five state-of-the-art model inspection schemes. Moreover, this attack brings almost no side-effects on the attack effectiveness and guarantees the universal feature of the trigger compared with original patch-based trojan attacks.
More
Translated text
Key words
Backdoor attack,Deep neural network,Scapegoat,Data poisoning,Weight limitation
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined