Complex soil mass redistribution along a catena using meteoric and in-situ 10Be as tracers

semanticscholar(2020)

引用 0|浏览0
暂无评分
摘要

In hilly and mountainous landscapes, the bedrock is actively converted to a continuous soil mantle. The bedrock-soil interface lowers spatially at the soil production rate, and the soil acts as a layer removing sediment produced locally and transported from upslope. Forested soils of a hummocky ground moraine landscape in Northern Germany exhibit strongly varying soil thicknesses with very shallow soils on crest positions and buried soils at the footslope. We explored the explanatory power of both 10Be forms (in situ and meteoric) for forest soils on a hillslope to shed light into the complex mass redistribution. Our main research questions were: how do meteoric and in-situ 10Be compare to each other? What do they really indicate in terms of soil processes (erosion, sedimentation, reworking)? By using both types of 10Be, the dynamics of soils and related mass transports should be better traceable. Both 10Be forms were measured along three profiles at different slope positions: Hydro1 (summit), Hydro3 (shoulder), Hydro4 (backslope). Furthermore, a buried horizon was found in the profile Hydro4 at 160 cm depth and 14C-dated. The distribution pattern of meteoric 10Be of Hydro4 shows an inverse exponential depth profile, and an almost uniform content of in-situ 10Be along the profile. Meteoric 10Be indicates on the one hand that a new soil was put on top of an older, now buried soil. On the other hand, meteoric 10Be is involved in pedogenetic processes and clearly exhibits clay eluviation in the topsoil and clay illuviation in the subsoil. The uniform content of the in situ 10Be shows soil mixing that must have occurred during erosion and sedimentation. The14C dated buried soil horizon indicates a deposition of eroded soil material about 7 ka BP. Consequently, an increase in the in-situ 10Be content towards the surface should be expect which however was not the case. The reason for this is so far unknown. Radiocarbon dating and 10Be data demonstrate that strong events of soil mass redistribution in Melzower Forest are mainly a result of ancient natural events. Further measurements of fallout radionuclides (239+240Pu) showed no erosion for the last few decades in the same catchment.

更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要