Transcriptome Analysis of Photosynthetic Characteristics was Induced by Low Temperature Stress in Brassica napus L.

semanticscholar(2019)

Cited 0|Views9
No score
Abstract
Background RNA Sequencing (RNA-Seq) technique could be utilized to compare the transcription groups of two different cold-resistant rapeseed leaves responding to low temperature at the seedling stage, analyze the photosynthetic characteristics of rapeseed subjected to low temperature stress, and identify the related genes for low temperature induction in rapeseed leaves. Results Using cold-tolerant variety 17NS and sensitive variety NF24 as experimental materials, carrying out RNA-Seq analysis by photosynthetic parameter determination and Illumina HiSeqTM platform. and screen out the KEGG significant enrichment pathway related to photosynthetic characteristics under low temperature stress. Differential Expressed Genes (DEGs) were used for real-time PCR to verify the reliability of RNA-Seq results. The results showed that the response of Brassica napus L. to low temperature stress mainly was achieved by inhibiting photosynthesis, the cold-tolerant variety 17NS had a strong ability to maintain membrane system stability and structural integrity after 24 h of low temperature stress, while the sensitive variety NF24 photosynthesis was significantly inhibited. Two pathways of Photosynthesis and Photosynthesis-antennas, which were significantly correlated with photosynthetic characteristics and low temperature stress were screened by KEGG enrichment. The results of DEGs indicated that 64 differentially expressed genes in these two pathways were induced by low temperature stress, and 8 of them were up-regulated expression and 56 of them were down-regulated expression. The expression pattern of DEGs was consistent with the results of RNA-Seq analysis by qRT-PCR detection and confirmed the reliability of RNA-Seq results. Conclusion Our study analysis and identified 17 low-temperature-induced photosynthetic-related candidate genes in Brassica napus L., and the GO and KEGG metabolic pathways clarified the molecular function of differentially expressed genes.
More
Translated text
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined