NEOROCKS project: results from photometric survey of Near-Earth objects

semanticscholar(2021)

Cited 0|Views7
No score
Abstract

Due to their proximity Near-Earth objects (NEOs) provide us with a unique opportunity to investigate asteroids with diameters down to dozens of meters. Moreover, NEOs create a constant potential hazard to the Earth, and thus the study of their physical properties is crucial for estimating the potential risks. A new photometric survey was carried out in the framework of the NEOROCKS (NEO Rapid Observation, Characterization, and Key Simulations) project funded by the European Union’s Horizon 2020 program with the aim to derive the visible colors of NEOs and perform the initial taxonomic classification.

The photometric survey was performed with a use of a 1.2m telescope at the Haute-Provence observatory and a 1.0m telescope at the Pic du Midi observatory, both located in France. Standard broadband Johnson-Cousins and Sloan photometric systems were used.

Color indexes were measured for a total of 51 NEOs. Among them, 24 objects belong to a group of potentially hazardous asteroids (PHAs). The majority of objects have absolute magnitude H in a 17-20 mag range.

The preliminary taxonomy was done following the classification by [1] using M4AST service [2]. In order to have better statistics only the main taxons S-, C-, and X-complexes, and A-, D-, V-types were considered. Fig. 1 shows color-color diagrams for the observed NEOs. One can see that different classes of objects are concentrated in the different areas of the plots, which suggests that our taxonomic classification is rather reliable. Additionally, our taxonomic classification was confirmed by albedo values that are available for about a third of objects in our sample. About 43% of objects in our sample belong to the S+Q-complex, about 19% to X-complex, 16% to C-complex, 12% were classified as D-types, and, finally, 6% and 4% as A- and V-types, respectively. The found distribution is in a general agreement with the previous works (e.g. [3, 4, 5]).

More

Translated text
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined