Insights into Ionic Liquid Electrolyte Transport and Structure via Operando Raman Microspectroscopy

semanticscholar(2021)

引用 0|浏览2
暂无评分
摘要
Ionic liquid electrolytes (ILEs) have become popular in various advanced Li-ion battery chemistries because of their high electrochemical and thermal stability, and low volatility. However, due to their relatively high viscosity and poor Li+ diffusion, it is thought large concentration gradients form, reducing their rate capability. Here, we utilised operando Raman microspectroscopy to visualise ILE concentration gradients for the first time. Specifically, using lithium bis(fluorosulfonyl)imide (LiFSI) in N-propyl- N-methylpyrrolidinium FSI, its "apparent" diffusion coefficient, lithium transference number, thermodynamic factor, ionic conductivity and resistance of charge-transfer against lithium metal, were isolated. Furthermore, the analysis of these concentration gradients led to insights into the bulk structure of ILEs, which we propose is composed of large, ordered aggregates.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要