Low plasticity burnishing improves fretting fatigue resistance in bone-anchored implants for amputation prostheses.

Medical engineering & physics(2022)

引用 4|浏览2
暂无评分
摘要
Fretting fatigue is a common problem for modular orthopedic implants which may lead to mechanical failure of the implant or inflammatory tissue responses due to excessive release of wear debris. Compressive residual stresses at the contacting surfaces may alleviate the problem. Here we investigate the potential of a surface enhancement method known as low plasticity burnishing (LPB) to increase the fretting fatigue resistance of bone-anchored implants for skeletal attachment of limb prostheses. Rotation bending fatigue tests performed on LPB treated and untreated test specimens demonstrate that the LPB treatment leads to statistically significantly increased resistance to fretting fatigue (LPB treated test specimens withstood on average 108,780 load cycles as compared with 37,845 load cycles for untreated test specimens, p = 0.004). LPB treated test specimens exhibited less wear at the modular interface as compared with untreated test specimens. This surface treatment may lead to reduced risk of fretting induced component failure and a reduced need for revision of implant system componentry.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要