Preparation of Dual Z-scheme Bi2MoO6/ZnSnO3/ZnO Heterostructure Photocatalyst for Efficient Visible Light Degradation of Organic Pollutants

Journal of Inorganic and Organometallic Polymers and Materials(2021)

引用 6|浏览2
暂无评分
摘要
An important means of achieving efficient charge separation and improving photocatalytic activity is the construction of heterostructures. In this study, the Bi2MoO6/ZnSnO3/ZnO heterostructure photocatalyst was synthesized by the hydrothermal method. The synthesized samples were carefully examined by X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), scanning electron microscope (SEM), high-resolution transmission electron microscopy (HR-TEM), photoluminescence (PL), and other analytical techniques. Meanwhile, the photocatalytic performance was further evaluated by multi-mode photocatalytic degradation with crystal violet (CV). The results show that the composite material has a relatively homogeneous cubic structure in size and shape. In the cubic structure, a heterogeneous structure exists between Bi2MoO6, ZnSnO3 and ZnO. Simultaneously, the dramatic changes in physical morphology, such as the specific surface area and particle size of the composites, led to a unique set of properties, such as a significant climb in light absorption properties and superior photocatalytic activity. In addition, the Bi2MoO6/ZnSnO3/ZnO composite material shows lower photoluminescence intensity, smaller arc radius, and stronger photocurrent response compared to ZnO, Bi2MoO6 and ZnSnO3/ZnO. Meanwhile, Bi2MoO6/ZnSnO3/ZnO shows higher photocatalytic efficiency for crystal violet (CV) and tetracycline hydrochloride (TC) and maintains good stability after 3 cycles of photodegradation experiments. Based on experimental results, the existence of heterojunctions between ZnO, ZnSnO3 and Bi2MoO6 and the possible photocatalytic mechanism for the degradation of crystal violet by dual Z-scheme composites are proposed. In conclusion, this study provides a feasible strategy for the photocatalytic degradation of organic pollutants by introducing ZnSnO3 and Bi2MoO6 to successfully construct composite catalysts with dual Z-scheme heterostructures.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要