Detection of persistent SARS-CoV-2 IgG antibodies in oral mucosal fluid and upper respiratory tract specimens following COVID-19 mRNA vaccination

medRxiv(2021)

Cited 25|Views11
No score
Abstract
Previous studies have shown that mRNA COVID-19 vaccines are highly effective at preventing SAR-CoV-2 infection by generating an immune response, which in part produces SARS-CoV-2 IgG antibodies in serum. In this study, we hypothesized that COVID-19 vaccines may elicit production of SARS-CoV-2 IgG antibodies in the upper respiratory tract, such as in oral and nasal mucosal fluid. To test that hypothesis, we enrolled 114 participants within 3-7 days of receiving the first dose of the Moderna mRNA COVID-19 vaccine and collected oral mucosal fluid samples on days 5, 10, 15, and 20 after each vaccine dose. Of participants naive to SARS-CoV-2 (n = 89), 79 (85.4%) tested positive for SARS-CoV-2 IgG antibodies by time point 2 (10 days +/-2 days after first vaccine dose), and 100% tested positive for SARS-CoV-2 IgG by time point 3 (15 days +/- 2 days after first vaccine dose). Additionally, we collected paired oral mucosal fluid and anterior nares samples from 10 participants who had received both vaccine doses. We found that participants had an average SARS-CoV-2 IgG antibody concentration of 2496.0 +/- 2698.0ng/mL in nasal mucosal fluid versus 153.4 +/- 141.0ng/mL in oral mucosal fluid. Here, we demonstrate detection and longitudinal persistence of SARS-CoV-2 IgG antibodies in upper respiratory tract specimens following COVID-19 mRNA vaccination. A high concentration of IgG targeting viral spike protein in the upper respiratory system may play an unexplored role in the prevention of SARS-CoV-2 infection and deserves further investigation.
More
Translated text
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined