Investigation of Isothermal Treatment on the Structural, Microstructure and Physical Properties of Li2O-Al2O3-SiO2 Glass-Ceramic

semanticscholar(2020)

引用 0|浏览0
暂无评分
摘要
The present work aims to investigate the effects of isothermal treatment on the structural, microstructure and physical properties of Li2O-Al2O3-SiO2 glass-ceramic. Sintering temperature plays a major role in producing the desired lithium aluminosilicate (LAS) glass-ceramic crystalline phases. This work also aims to achieve a low thermal expansion coefficient β-spodumene (LiAlSi2O6) crystalline phase with improved density and lower porosity, which can be useful for the applications with thermal shock properties. The LAS glass-ceramic was fabricated by the melt-quenching technique at 1550 °C for 5 h before being isothermally sintered at an elevated temperature of 900 to 1200 °C for 30 min. The evolution of LAS glass-ceramic crystalline phases was identified using differential thermal analysis and the β-spodumene exothermic peak appeared at 999 °C. Based on the X-ray diffraction results, the complete transformation of β-spodumene from high-quartz solid solution (β-quartz) occurred at 1000 °C. However, the sintering temperature did not change the crystalline phase when sintered above 1000 °C, but the lattice parameter of the crystal structure was slightly altered. Moreover, it was observed that the LAS glass-ceramic grain size increased with temperature, whereby the smallest average grain size recorded (0.61 µm) for LAS glass-ceramic sintered at 1100 °C. Meanwhile, the fully densified LAS glass-ceramic at 1100 ° C was measured at 2.47 g/cm3 with 0.52% porosity. The isothermal treatment at elevated temperature indicated that sintering at 1100 °C provided a denser, less porous, and small average grain size which is preferred for thermal shock resistance applications.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要