Top of the Atmosphere Reflected Shortwave Radiative Fluxes from GOES-R

ATMOSPHERIC MEASUREMENT TECHNIQUES(2021)

引用 0|浏览10
暂无评分
摘要
Abstract. Under the GOES-R activity, new algorithms are being developed at the National Oceanic and Atmospheric Administration (NOAA)/Center for Satellite Applications and Research (STAR) to derive surface and Top of the Atmosphere (TOA) shortwave (SW) radiative fluxes from the Advanced Baseline Imager (ABI), the primary instrument on GOES-R. This paper describes a support effort in the development and evaluation of the ABI instrument capabilities to derive such fluxes. Specifically, scene dependent narrow-to-broadband (NTB) transformations are developed to facilitate the use of observations from ABI at the TOA. Simulations of NTB transformations have been performed with MODTRAN4.3 using an updated selection of atmospheric profiles as implemented with the final ABI specifications. These are combined with Angular Distribution Models (ADMs), which are a synergy of ADMs from the Clouds and the Earth's Radiant Energy System (CERES) and from simulations. Surface condition at the scale of the ABI products as needed to compute the TOA radiative fluxes come from the International Geosphere-Biosphere Programme (IGBP). Land classification at 1/6° resolution for 18 surface types are converted to the ABI 2-km grid over the (CONtiguous States of the United States) (CONUS) and subsequently re-grouped to 12 IGBP types to match the classification of the CERES ADMs. In the simulations, default information on aerosols and clouds is based on the ones used in MODTRAN. Comparison of derived fluxes at the TOA is made with those from the CERES and/or the Fast Longwave and Shortwave Radiative Flux (FLASHFlux) data. A satisfactory agreement between the fluxes was observed and possible reasons for differences have been identified; the agreement of the fluxes at the TOA for predominantly clear sky conditions was found to be better than for cloudy sky due to possible time shift in observation times between the two observing systems that might have affected the position of the clouds during such periods.
更多
查看译文
关键词
shortwave radiative fluxes,top-of-the-atmosphere
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要