COVID-19 mass testing: harnessing the power of wastewater epidemiology

medRxiv(2021)

引用 2|浏览11
暂无评分
摘要
Background COVID-19 patients shed SARS-CoV-2 RNA in their faeces. We hypothesised that detection of SARS-CoV-2 RNA in wastewater treatment plant (WWTP) influent could be a valuable tool to assist in public health decision making. We aimed to rapidly develop and validate a scalable methodology for the detection of SARS-CoV-2 RNA in wastewater that could be implemented at a national level and to determine the relationship between the wastewater signal and COVID-19 cases in the community. Methods We developed a filtration-based methodology for the concentration of SARS-CoV-2 from WWTP influent and subsequent detection and quantification by RT-qPCR. This methodology was used to monitor 28 WWTPs across Scotland, serving 50% of the population. For each WWTP catchment area, we collected data describing COVID-19 cases and deaths. We quantified spatial and temporal relationships between SARS-CoV-2 RNA in wastewater and COVID-19 cases. Findings Daily WWTP SARS-CoV-2 influent viral RNA load, calculated using daily influent flow rates, had the strongest correlation ({rho}>0.9) with COVID-19 cases within a catchment. As the incidence of COVID-19 cases within a community increased, a linear relationship emerged between cases and influent viral RNA load. There were significant differences between WWTPs in their capacity to predict case numbers based on influent viral RNA load, with the limit of detection ranging from twenty-five cases for larger plants to a single case in smaller plants. Interpretation The levels of SARS-CoV-2 RNA in WWTP influent provide a cost-effective and unbiased measure of COVID-19 incidence within a community, indicating that national scale wastewater-based epidemiology can play a role in COVID-19 surveillance. In Scotland, wastewater testing has been expanded to cover 75% of the population, with sub-catchment sampling being used to focus surge testing. SARS-CoV-2 variant detection, assessment of vaccination on community transmission and surveillance for other infectious diseases represent promising future applications.
更多
查看译文
关键词
wastewater epidemiology
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要