Schematic information influences memory and generalisation behaviour for schema-relevant and -irrelevant information

Cognition(2022)

Cited 5|Views7
No score
Abstract
Schemas modulate memory performance for schema-congruent and -incongruent information. However, it is assumed they do not influence behaviour for information irrelevant to themselves. We assessed memory and generalisation behaviour for information related to an underlying pattern, where a schema could be extracted (schema-relevant), and information that was unrelated and therefore irrelevant to the extracted schema (schema-irrelevant). Using precision measures of long-term memory, where participants learnt associations between words and locations around a circle, we assessed memory and generalisation for schema-relevant and -irrelevant information. Words belonged to two semantic categories: human-made and natural. For one category, word-locations were clustered around one point on the circle (clustered condition), while the other category had word-locations randomly distributed (non-clustered condition). The presence of an underlying pattern in the clustered condition allows for the extraction of a schema that can support both memory and generalisation. At test, participants were presented with old (memory) and new (generalisation) words, requiring them to identify a remembered location or make a best guess. The presence of the clustered pattern modulated memory and generalisation. In the clustered condition, participants placed old and new words in locations consistent with the underlying pattern. In contrast, for the non-clustered condition, participants were less likely to place old and new non-clustered words in locations consistent with the clustered condition. Therefore, we provide evidence that the presence of schematic information modulates memory and generalisation for schema-relevant and -irrelevant information. Our results highlight the need to carefully construct appropriate schema-irrelevant control conditions such that behaviour in these conditions is not modulated by the presence of a schema. Theoretically, models of schema processing need to account for how the presence of schematic information can have consequences for information that is irrelevant to itself.
More
Translated text
Key words
Episodic memory,Schema,Generalisation
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined