Infectious SARS-CoV-2 in Exhaled Aerosols and Efficacy of Masks During Early Mild Infection

medRxiv(2021)

引用 18|浏览5
暂无评分
摘要
Background: SARS-CoV-2 epidemiology implicates airborne transmission; mask source-control efficacy for, variant impact on, and infectiousness of aerosols are not well understood. Methods: We recruited COVID-19 cases to give blood, saliva, mid-turbinate and fomite (phone) swabs, and 30-minute breath samples while vocalizing into a Gesundheit-II, with and without masks at up to two visits two days apart. We quantified and sequenced viral RNA, cultured virus, and assayed sera for anti-spike and anti-receptor binding domain antibodies. Results: We enrolled 61 participants with active infection, May 2020 through April 2021. Among 49 seronegative cases (mean days post onset 3.8 {+/-}2.1), we detected SARS-CoV-2 RNA in 45% of fine ([≥]5 m), 31% of coarse (>5 m) aerosols, and 65% of fomite samples overall and in all samples from four alpha variant cases. Masks reduced viral RNA by 48% (95% confidence interval [CI], 3 to 72%) in fine and by 77% (95% CI, 51 to 89%) in coarse aerosols. The alpha variant was associated with a 43-fold (95% CI, 6.6 to 280-fold) increase in fine aerosol viral RNA that remained a significant 18-fold (95% CI, 3.4 to 92-fold) increase adjusting for viral RNA in saliva, in mid-turbinate swabs, and other potential confounders. Two fine aerosol samples, collected days 2-3 post illness onset, while participants wore masks, were culture-positive. Conclusion: SARS-CoV-2 is evolving toward more efficient airborne transmission and loose-fitting masks provide significant but only modest source control. Therefore, until vaccination rates are very high, continued layered controls and tight-fitting masks and respirators will be necessary.
更多
查看译文
关键词
exhaled aerosols,masks,infection,sars-cov
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要