Integration of transcriptomic and proteomic analyses reveals several levels of metabolic regulation in the excess starch and early senescent leaf mutant lses1 in rice

Zhiming Chen, Yongsheng Wang,Rongyu Huang, Zesen Zhang,Jinpeng Huang, F. Yu, Yao-Chen Lin,Yu-chun Guo, K. Liang,Yuanchang Zhou, Fangyu Chen

BMC Plant Biology(2021)

Cited 1|Views8
No score
Abstract
Background: The normal metabolism of transitory starch in leaves plays an important role in ensuring photosynthesis, delaying senescence and maintaining high yield in crops. OsCKI1 (casein kinase I1) plays crucial regulatory roles in multiple important physiological processes, including root development, hormonal signaling and low temperature-treatment adaptive growth in rice; however, its potential role in regulating temporary starch metabolism or premature leaf senescence remains unclear. To reveal the molecular regulatory mechanism of OsCKI1 in rice leaves, physiological, transcriptomic and proteomic analyses of leaves of the mutant lses1 (leaf starch excess and senescence 1), allelic to osckI1, and its wild-type variety (WT) were performed. Results: Phenotypic identification and physiological measurements showed that the lses1 mutant exhibited starch excess in the leaves and an obvious leaf tip withering phenotype as well as high ROS and MDA contents, low chlorophyll content and protective enzyme activities compared to WT. Transcriptomic and proteomic analyses showed that the correlations of most genes at the transcription and translation levels were limited. However, the changes of several important genes related to carbohydrate metabolism and apoptosis at the mRNA and protein levels were consistent. The protein-protein interaction (PPI) network might play accessory roles in promoting premature senescence of lses1 leaves. Comprehensive transcriptomic and proteomic analysis indicated that multiple key genes/proteins related to starch and sugar metabolism, apoptosis and ABA signaling exhibited significant differential expression. Abnormal increase in temporary starch was highly correlated with the expression of starch biosynthesis-related genes, which might be the main factor that causes premature leaf senescence and changes in multiple metabolic levels in leaves of lses1. In addition, significant up regulation of four proteins associated with ABA accumulation and signaling were detected in the lses1 mutant, suggesting that ABA may involve in multiple metabolic regulation via LSES1/OsCKI1 and the formation of mutant phenotype in lses1 leaves.Conclusion: The current study established the high correlation between the changes in physiological characteristics and mRNA and protein expression profiles in lses1 leaves, and emphasized the positive effect of excessive starch on accelerating premature leaf senescence. The expression patterns of genes/proteins related to starch biosynthesis and ABA signaling were analyzed via transcriptomes and proteomes, which provided a novel direction and research basis for the subsequent exploration of the regulation mechanism of temporary starch and apoptosis via LSES1/OsCKI1 in rice.
More
Translated text
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined