Two-stage crossed beam cooling with 6Li

semanticscholar(2015)

引用 0|浏览0
暂无评分
摘要
Applying the direct simulation Monte Carlo (DSMC) method developed for ultracold Bose-Fermi mixture gases research, we study the sympathetic cooling process of 6Li and 133Cs atoms in a crossed optical dipole trap. The obstacles to producing 6Li Fermi degenerate gas via direct sympathetic cooling with 133Cs are also analyzed, by which we find that the side-effect of the gravity is one of the main obstacles. Based on the dynamic nature of 6Li and 133Cs atoms, we suggest a two-stage cooling process with two pairs of crossed beams in microgravity environment. According to our simulations, the temperature of 6Li atoms can be cooled to T = 29.5 pK and T/TF = 0.59 with several thousand atoms, which propose a novel way to get ultracold fermion atoms with quantum degeneracy near pico-Kelvin. © 2015 Optical Society of America OCIS codes: (020.0020) Atomic and molecular physics; (020.2070) Effects of collisions; (020.7010) Laser trapping. References and links 1. D. J. Larson, J. C. Bergquist, J. J. Bollinger, W. M. Itano, and D. J. Wineland, “Sympathetic cooling of trapped ions: a laser-cooled two-species nonneutral ion plasma,” Phys. Rev. Lett. 57(1), 70–73 (1986). 2. M. Taglieber, A.-C. Voigt, T. Aoki, T. W. Hänsch, and K. Dieckmann, “Quantum degenerate two-species FermiFermi mixture coexisting with a Bose-Einstein condensate,” Phys. Rev. Lett. 100(1), 010401 (2008). 3. D. S. Durfee and W. Ketterle, “Experimental studies of Bose-Einstein condensation,” Opt. Express 2(8), 299–313 (1998). 4. T. B. Ottenstein, T. Lompe, M. Kohnen, A. N. Wenz, and S. Jochim, “Collisional stability of a three-component degenerate Fermi gas,” Phys. Rev. Lett. 101(20), 203202 (2008). 5. M. Brown-Hayes and R. Onofrio, “Optimal cooling strategies for magnetically trapped atomic Fermi-Bose mixtures,” Phys. Rev. A 70(6), 063614 (2004). 6. H. Fehrmann, M. Baranov, M. Lewenstein, and L. Santos, “Quantum phases of Bose-Fermi mixtures in optical lattices,” Opt. Express 12(1), 55–68 (2004). 7. V. Efimov, “Energy levels arising from resonant two-body forces in a three-body system,” Phys. Lett. B 33(8), 563–564 (1970). 8. E. Braaten and H.-W. Hammer, “Efimov physics in cold atoms,” Ann. Phys. 322(1), 120–163 (2007). 9. S. K. Tung, C. Parker, J. Johansen, C. Chin, Y. Wang, P. S. Julienne, “Ultracold mixtures of atomic 6Li and 133Cs with tunable interactions,” Phys. Rev. A 87(1), 010702 (2013). 10. I. Ferrier-Barbut, M. Delehaye, S. Laurent, A. T. Grier, M. Pierce, B. S. Rem, F. Chevy, and C. Salomon, “A mixture of Bose and Fermi superfluids,” Science 345(6200), 1035–1038 (2014). 11. M. Repp, R. Pires, J. Ulmanis, R. Heck, E. D. Kuhnle, M. Weidemüller, and E. Tiemann, “Observation of interspecies 6Li-133Cs Feshbach resonances,” Phys. Rev. A 87(1), 010701 (2013). #232812 $15.00 USD Received 19 Jan 2015; revised 22 Mar 2015; accepted 6 Apr 2015; published 22 Apr 2015 © 2015 OSA 4 May 2015 | Vol. 23, No. 9 | DOI:10.1364/OE.23.011378 | OPTICS EXPRESS 11378 12. D. J. Han, M. T. DePue, and D. S. Weiss, “Loading and compressing Cs atoms in a very far-off-resonant light trap,” Phys. Rev. A 63(2), 023405 (2001). 13. T. Weber, J. Herbig, M. Mark, H. C. Nägerl, and R. Grimm, “Bose-Einstein condensation of Cesium,” Science 299(5604), 232–235 (2003). 14. D. Guéry-Odelin, J. Söding, P. Desbiolles, and J. Dalibard, “Strong evaporative cooling of a trapped cesium gas,” Opt. Express 2(8), 323–329 (1998). 15. A. H. Hansen, A. Y. Khramov, W. H. Dowd, A. O. Jamison, B. Plotkin-Swing, R. J. Roy, and S. Gupta, “Production of quantum-degenerate mixtures of ytterbium and lithium with controllable interspecies overlap,” Phys. Rev. A 87(1), 013615 (2013). 16. L. Wang, P. Zhang, X.-Z. Chen, and Z.-Y. Ma, “Generating a picokelvin ultracold atomic ensemble in microgravity,” J. Phys. B: At., Mol. Opt. Ph. 46, 195302 (2013). 17. A. E. Leanhardt, T. A. Pasquini, M. Saba, A. Schirotzek, Y. Shin, D. Kielpinski, D. E. Pritchard, and W. Ketterle, “Cooling Bose-Einstein condensates below 500 picokelvin,” Science 301(5639), 1513–1515 (2003). 18. G. A. Bird, “Molecular gas dynamics and the direct simulation of gas flows” (Oxford Science Publications, 1998). 19. R. Grimm, M. Weidemüller, and Y. B. Ovchinnikov, “Optical dipole traps for neutral atoms,” Adv. At., Mol., Opt. Phys. 42, 95–170 (2000). 20. M. Mudrich, S. Kraft, K. Singer, R. Grimm, A. Mosk, and M. Weidemüller, “Sympathetic cooling with two atomic species in an optical trap,” Phys. Rev. Lett 88(25), 253001 (2002). 21. L. J. LeBlanc and J. H. Thywissen, “Species-specific optical lattices,” Phys. Rev. A 75(5), 053612 (2007). 22. V. A. Thomas, N. S. Prasad and C. A. Mohan Reddy, “Microgravity research platformsła study,” Curr. Sci. 79(3) 336–340 (2000). 23. M. E. Gehm, “Properties of 6Li”, http://www.physics.ncsu.edu/jet/techdocs/pdf/PropertiesOfLi.pdf 24. T. Kovachy, J. M. Hogan, A. Sugarbaker, S. M. Dickerson, C. A. Donnelly, C. Overstreet, and M. A. Kasevich, “Matter wave lensing to picokelvin temperatures,” arXiv:1407.6995v1 (2014).
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要