7-Dehydrocholesterol is an endogenous suppressor of ferroptosis

Florencio Porto Freitas, Hamed Alborzinia, Ancély Ferreira dos Santos,Palina Nepachalovich, Lohans Pedrera,Omkar Zilka,Alex Inague, Corinna Klein, Nesrine Aroua, Kamini Kaushal, Bettina Kast,Svenja M. Lorenz,Viktoria Kunz,Helene Nehring,Thamara N. Xavier da Silva,Zhiyi Chen, Sena Atici,Sebastian G. Doll, Emily L. Schaefer, Ifedapo Ekpo,Werner Schmitz, Aline Horling,Peter Imming,Sayuri Miyamoto,Ann M. Wehman,Thiago C. Genaro-Mattos,Karoly Mirnics,Lokender Kumar,Judith Klein-Seetharaman,Svenja Meierjohann,Isabel Weigand,Matthias Kroiss, Georg W. Bornkamm, Fernando Gomes, Luis Eduardo Soares Netto, Manjima B. Sathian, David B. Konrad, Douglas F. Covey, Bernhard Michalke,Kurt Bommert,Ralf C. Bargou,Ana Garcia-Saez,Derek A. Pratt,Maria Fedorova, Andreas Trumpp,Marcus Conrad,José Pedro Friedmann Angeli

Nature(2024)

引用 14|浏览13
暂无评分
摘要
Ferroptosis is a form of cell death that has received considerable attention not only as a means to eradicate defined tumour entities but also because it provides unforeseen insights into the metabolic adaptation that tumours exploit to counteract phospholipid oxidation 1 , 2 . Here, we identify proferroptotic activity of 7-dehydrocholesterol reductase (DHCR7) and an unexpected prosurvival function of its substrate, 7-dehydrocholesterol (7-DHC). Although previous studies suggested that high concentrations of 7-DHC are cytotoxic to developing neurons by favouring lipid peroxidation 3 , we now show that 7-DHC accumulation confers a robust prosurvival function in cancer cells. Because of its far superior reactivity towards peroxyl radicals, 7-DHC effectively shields (phospho)lipids from autoxidation and subsequent fragmentation. We provide validation in neuroblastoma and Burkitt’s lymphoma xenografts where we demonstrate that the accumulation of 7-DHC is capable of inducing a shift towards a ferroptosis-resistant state in these tumours ultimately resulting in a more aggressive phenotype. Conclusively, our findings provide compelling evidence of a yet-unrecognized antiferroptotic activity of 7-DHC as a cell-intrinsic mechanism that could be exploited by cancer cells to escape ferroptosis.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要