Discovery and Functional Characterization of a Clandestine ATP- Dependent Amidoligase in the Biosynthesis of the Capsular Polysaccharide from Campylobacter jejuni

BIOCHEMISTRY(2022)

引用 1|浏览3
暂无评分
摘要
Campylobacter jejuni is a Gram-negative, pathogenic bacterium that is commensal in poultry. Infection of C. jejuni leads to campylobacteriosis, the leading cause of gastroenteritis worldwide. Coating the surface of C. jejuni is a thick layer of sugar molecules known as the capsular polysaccharide (CPS). The CPS of C. jejuni NCTC 11168 (HS:2) is composed of a repeating unit of D-glycero-L-gluco-heptose, D-glucuronate, D-N-acetyl-galactosamine, and D-ribose. The glucuronate is further amidated with either ethanolamine or serinol, but it is unknown how this new amide bond is formed. Sequence similarity networks were used to identify a candidate enzyme for amide bond formation during the biosynthesis of the CPS of C. jejuni. The C-terminal domain of Cj1438 was shown to catalyze amide bond formation using MgATP and D-glucuronate in the presence of either ethanolamine phosphate or (S)-serinol phosphate. Product formation was verified using 31P NMR spectroscopy and ESI mass spectrometry, and the kinetic constants determined using a coupled enzyme assay by measuring the rate of ADP formation. This work represents the first functional characterization of an ATP-dependent amidoligase in the formation of amide bonds in the biosynthetic pathway for the assembly of the CPS in C. jejuni.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要