GCN2 kinase activation by ATP-competitive kinase inhibitors

NATURE CHEMICAL BIOLOGY(2021)

Cited 15|Views10
No score
Abstract
Small-molecule kinase inhibitors represent a major group of cancer therapeutics, but tumor responses are often incomplete. To identify pathways that modulate kinase inhibitor response, we conducted a genome-wide knockout (KO) screen in glioblastoma cells treated with the pan-ErbB inhibitor neratinib. Loss of general control nonderepressible 2 (GCN2) kinase rendered cells resistant to neratinib, whereas depletion of the GADD34 phosphatase increased neratinib sensitivity. Loss of GCN2 conferred neratinib resistance by preventing binding and activation of GCN2 by neratinib. Several other Food and Drug Administration (FDA)-approved inhibitors, such erlotinib and sunitinib, also bound and activated GCN2. Our results highlight the utility of genome-wide functional screens to uncover novel mechanisms of drug action and document the role of the integrated stress response (ISR) in modulating the response to inhibitors of oncogenic kinases.
More
Translated text
Key words
Cancer therapy,Chemical genetics,Kinases,Small molecules,Chemistry/Food Science,general,Biochemical Engineering,Biochemistry,Cell Biology,Bioorganic Chemistry
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined